TOLL FREE No : 1800-103-4583|customer_relations@qaiglobal.com
Menu

Generative AI Speciality

Register Now

Go to Training Calendar
Request In-house Training
Become a Trainer

DURATION: 5 Days

Course Pre-requisites

Labs: Open Source platform and Koenig DC will be provided

Pre-requisite:  Fundamentals of Python. Knowledge of machine learning will be an added advantage

 

Course Outline

Module 01: Introduction of GenAI 

  • Introduction to Generative AI
  • Architecture of Generative AI
  • Applications of Generative AI using Transformer Library
  • Introduction to Generative Adversarial Networks (GANs)
  • Labs

 

Module 02: Introduction of Large language Model 

  • Architecture of Large Language Models
  • Types of Large Language Models (LLMs)
  • Task based Text AI LLMs – Translation, Summarization, Sentence Similarity, Automatic Speech Recognition, Text to Speech, etc.
  • Major Text AI LLMs – LLaMA, Qwen, Cohere, Falcon LLM
  • Image AI Models & Services – Object Detection, Image Segmentation, Image Retrieval, Image, Image Captioning, Visual QnA, Zero-shot Image Classification, etc.
  • Labs

 

Module 03: Learning Prompt Engineering using Open Source Models

  • Introduction to Prompt Engineering
  • Prompt Engineering Techniques
  • Text Prompting using Llama (Meta)
  • Image Prompting using Llama (Meta)
  • Code Prompting using Llama (Meta)
  • Labs

 

Module 04: Basic LLM Systems (RAG) using Open Source Models

  • Introduction to Retrieval Augmented Generation (RAG)
  • Introduction to LangChain
  • Concept of Embedding, Retrieval, Chain and Agents using LangChain
  • Las: Build a Simple LLM Application using LangChain
  • Lab: Build a Chatbot LangChain
  • Lab: Build vector stores and retriever using LangChain
  • Lab: Build an Agent LangChain
  • Lab: Build a Retrieval Augmented Generation (RAG) Application using LangChain
  • Lab: Build a Conversational RAG Application using LangChain Module 05: Advanced LLM Systems (QnA) using Open Source Models
  • Difference between RAG & Question Answering system
  • Build a Question Answering system over Tabular Data using LangChain
  • Build a Question/Answering system over SQL data using LangChain
  • Labs

 

Module 06: Fine-tuning Techniques using Open Source Models

  • Introduction to Quantization
  • Optimization of model weights (data types)
  • Modes of Quantization
  • Fine tuning LLMs (Meta’s Llama / Alibaba’s Qwen / Google’s Gemma)
  • Labs

 

Module 07: Evaluation of Open Source Models using MLflow

  • Introduction to MLflow
  • Build a machine learning model using MLflow
  • MLflow Deployment Servers
  • LLM Evaluation using MLflow
  • Lab: Evaluate a Hugging Face LLM
Get 10% discount on a group of 4 or more nominations! (Discount will be applied during checkout)
Only applicable for selected batches and courses.

Generative AI Speciality

TrainingCourseLocationPriceQuantityAdd to Cart Button
SKU: N/A Category:
Our Clients